By Topic

A robust edge encoding technique for energy-efficient multi-cycle interconnect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jae-sun Seo ; Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, USA ; Sylvester, D. ; Blaauw, D. ; Kaul, H.
more authors

In this paper, we propose a new edge encoding technique to reduce the energy consumption in multi-cycle interconnects. Both average and worst-case energy are reduced by desynchronizing the edges of rising and falling transitions. In a 1.2V 65nm CMOS technology, the approach achieves up to 31% energy reduction with no latency overhead over optimally designed conventional busses due to coupling capacitance reductions. The technique further reduces energy consumption by 38% with iso-throughput at the expense of one-cycle latency. Energy savings are shown to be more robust to process variations than previous techniques.

Published in:

Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium on

Date of Conference:

27-29 Aug. 2007