By Topic

Capacity Theorems for the AWGN multi-way relay channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ong, L. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Kellett, C.M. ; Johnson, S.J.

The L-user additive white Gaussian noise multi-way relay channel is considered, where multiple users exchange information through a single relay at a common rate. Existing coding strategies, i.e., complete-decode-forward and compress-forward are shown to be bounded away from the cut-set upper bound at high signal-to-noise ratios (SNR). It is known that the gap between the compress-forward rate and the capacity upper bound is a constant at high SNR, and that between the complete-decode-forward rate and the upper bound increases with SNR at high SNR. In this paper, a functional-decode-forward coding strategy is proposed. It is shown that for L ≥ 3, complete-decode-forward achieves the capacity when SNR ≤ 0 dB, and functional-decode-forward achieves the capacity when SNR ≥ 0 dB. For L = 2, functional-decode-forward achieves the capacity asymptotically as SNR increases.

Published in:

Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on

Date of Conference:

13-18 June 2010