By Topic

Asymptotic sum-capacity of random Gaussian interference networks using interference alignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aldridge, M. ; Dept. of Math., Univ. of Bristol, Bristol, UK ; Johnson, O. ; Piechocki, R.

We consider a dense n-user Gaussian interference network formed by paired transmitters and receivers placed independently at random in Euclidean space. Under natural conditions on the node position distributions and signal attenuation, we prove convergence in probability of the average per-user capacity CΣ/n to ½ E log(1 + 2SNR). The achievability result follows directly from results based on an interference alignment scheme presented in recent work of Nazer et al. Our main contribution comes through the converse result, motivated by ideas of `bottleneck links' developed in recent work of Jafar. An information theoretic argument gives a capacity bound on such bottleneck links, and probabilistic counting arguments show there are sufficiently many such links to tightly bound the sum-capacity of the whole network.

Published in:

Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on

Date of Conference:

13-18 June 2010