By Topic

Model-based design analysis for programmable remote center of motion in minimally invasive surgery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. Yang ; Department of Mechanical Engineering, National University of Singapore, Singapore ; CB Chng ; CK Chui ; DPC Lau

Remote center of motion (RCM) is an important concept in the kinematics for robotic minimally invasive surgery (MIS). This work focuses on the kinematic modeling of mechanism design for programmable RCM in MIS. Programmable RCM uses multiple joints coordination to maintain the isocenter of surgical tool manipulation during MIS. In this work, the kinematic task requirement is studied using a multibody system analysis approach. A generalized model based on closed-loop kinematic chain was proposed. Next, an appropriate serial manipulator was conceptualized and kinematically modeled. Finally, simulation-based evaluations were performed on virtual models built with modeling software tools. The contribution of this work is the introduction of a model-based design analysis methodical approach. This will provide a framework for the implementation of a model-based control scheme in robotic minimally invasive surgery. In addition, this work could offer potential insights to better innovations for mechanical RCM system.

Published in:

2010 IEEE Conference on Robotics, Automation and Mechatronics

Date of Conference:

28-30 June 2010