By Topic

A large scale characterization of RO-PUF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maiti, A. ; Electr. & Comput. Eng. Dept., Virginia Tech, Blacksburg, VA, USA ; Casarona, J. ; McHale, L. ; Schaumont, P.

To validate the effectiveness of a Physical Unclonable Function (PUF), it needs to be characterized over a large population of chips. Though simulation methods can provide approximate results, an on-chip experiment produces more accurate result. In this paper, we characterize a PUF based on ring oscillator (RO) using a significantly large population of 125 FPGAs. We analyze the experimental data using a ring oscillator loop delay model, and quantify the quality factors of a PUF such as uniqueness and reliability. The RO-PUF shows an average inter-die Hamming distance of 47.31%, and an average intra-die Hamming distance of 0.86% at normal operating condition. Additionally, we intend to make this large RO frequency dataset available publicly for the research community.

Published in:

Hardware-Oriented Security and Trust (HOST), 2010 IEEE International Symposium on

Date of Conference:

13-14 June 2010