By Topic

Microwave Characterization Using Least-Square Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hacib, T. ; Lab. d''etudes et de Modelisation en Electrotech., Univ. de Jijel, Jijel, Algeria ; Le Bihan, Y. ; Mekideche, M.R. ; Acikgoz, H.
more authors

This paper presents the use of the least-square support vector machines (LS-SVM) technique, combined with the finite element method (FEM), to evaluate the microwave properties of dielectric materials. The LS-SVM is a statistical learning method that has good generalization capability and learning performance. The FEM is used to create the data set required to train the LS-SVM. The performance of LS-SVM model depends on a careful setting of its associated hyper-parameters. Different tuning techniques for optimizing the LS-SVM hyper-parameters are studied: cross validation (CV), genetic algorithms (GA), heuristic approach, and Bayesian regularization (BR). Results show that BR provides a good compromise between accuracy and computational cost.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 8 )