By Topic

Parallel Direct Solver for the Finite Integration Technique in Electrokinetic Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tinzefte, A. ; L2EP-LAMEL, Univ. de Lille, Villeneuve-d''Ascq, France ; Le Menach, Y. ; Korecki, J. ; Guyomarch, F.
more authors

The finite integration technique allows the simulation of real-world electromagnetic field problems with complex geometries. It provides a discrete reformulation of Maxwell's equations in their integral form suitable for numerical computing. The resulting matrix equations of the discretized fields can be used for efficient numerical simulations on modern computers and can be exploited to use a parallel computing. In fact, by reordering the unknowns by the nested dissection method, it is possible to directly construct the lower triangular matrix of the Cholesky factorization with many processors without assembling the matrix system. In this paper, a parallel algorithm is proposed for the direct solution of large sparse linear systems with the finite integration technique. This direct solver has the advantage of handling singularities in the matrix of linear systems. The computational effort for these linear systems, often encountered in numerical simulation of electromagnetic phenomena by finite integration technique, is very significant in terms of run-time and memory requirements. Many numerical tests have been carried out to evaluate the performance of the parallel direct solver.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 8 )