Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Theoretical Study on Thermoelectric Properties of Ge Nanowires Based on Electronic Band Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen Huang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Chee Shin Koong ; Liang, Gengchiau

Theoretical studies on the thermoelectric properties of Ge nanowires (NWs) in terms of the Seebeck coefficient, electrical conductance, and power factor are carried out under different combinations of parameters. As orientation affects power factor, [100] Ge NWs have better performance than NWs along [111] and [110] in general. For extremely small (1-nm) NWs, the effect of cross-sectional shape also plays an important role on the thermoelectric properties of Ge NWs due to quantum confinement effects. The thermoelectric properties vary strongly depending on the band structure of the Ge NWs of different sizes, cross-sectional shapes, and orientations. Comparing the results between 1-nm triangular Ge and Si NWs in terms of power factor, p-type Ge NWs outperform Si NWs, while n-type Si NWs outperform Ge NWs due to the higher numbers of subband valleys contributing to electron transport.

Published in:

Electron Device Letters, IEEE  (Volume:31 ,  Issue: 9 )