Cart (Loading....) | Create Account
Close category search window

Image segmentation for surface material-type classification using 3D geometry information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
To, A.W.K. ; ARC Centre of Excellence for Autonomous Syst., Univ. of Technol., Sydney, NSW, Australia ; Paul, G. ; Dikai Liu

This paper describes a novel approach for the segmentation of complex images to determine candidates for accurate material-type classification. The proposed approach identifies classification candidates based on image quality calculated from viewing distance and angle information. The required viewing distance and angle information is extracted from 3D fused images constructed from laser range data and image data. This approach sees application in material-type classification of images captured with varying degrees of image quality attributed to geometric uncertainty of the environment typical for autonomous robotic exploration. The proposed segmentation approach is demonstrated on an autonomous bridge maintenance system and validated using gray level co-occurrence matrix (GLCM) features combined with a naive Bayes classifier. Experimental results demonstrate the effects of viewing distance and angle on classification accuracy and the benefits of segmenting images using 3D geometry information to identify candidates for accurate material-type classification.

Published in:

Information and Automation (ICIA), 2010 IEEE International Conference on

Date of Conference:

20-23 June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.