By Topic

Nonlinear feedback control for trajectory tracking of an unmanned underwater vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinqian Bian ; Dept. of Autom., Harbin Eng. Univ., Harbin, China ; Ying Qu ; Zheping Yan ; Wei Zhang

This paper presents a nonlinear input-state feedback linearization controller for tracking trajectory on horizontal plane with the rudder of an unmanned underwater vehicle (UUV). UUV system is strongly nonlinear, but the model is often simplified into linearization under some strict assumptions in some traditional linear control methods for the need of the control laws, and the linearization may induce large modeling errors and cause severe problems in the practical applications. In this paper, an input-state feedback linearization controller is designed to transform the nonlinear UUV model into an equivalent linear model. The trajectory tracking system is confirmed to be stable and UUV tracks trajectory approximately by pole placement through properly choosing the virtual input. Simulation results illustrate the system is stable and has robust with proposed control scheme.

Published in:

Information and Automation (ICIA), 2010 IEEE International Conference on

Date of Conference:

20-23 June 2010