By Topic

Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Donahue, M.M. ; Weldon Sch. of Biomed. Eng., Purdue Univ., West Lafayette, IN, USA ; Buzzard, G.T. ; Rundell, A.E.

The sparse grid-based experiment design algorithm sequentially selects an experimental design point to discriminate between hypotheses for given experimental conditions. Sparse grids efficiently screen the global uncertain parameter space to identify acceptable parameter subspaces. Clustering the located acceptable parameter vectors by the similarity of the simulated model trajectories characterises the data-compatible model dynamics. The experiment design algorithm capitalises on the diversity of the experimentally distinguishable system output dynamics to select the design point that best discerns between competing model-structure and parameter-encoded hypotheses. As opposed to designing the experiments to explicitly reduce uncertainty in the model parameters, this approach selects design points to differentiate between dynamical behaviours. This approach further differs from other experimental design methods in that it simultaneously addresses both parameter- and structural-based uncertainty that is applicable to some ill-posed problems where the number of uncertain parameters exceeds the amount of data, places very few requirements on the model type, available data and a priori parameter estimates, and is performed over the global uncertain parameter space. The experiment design algorithm is demonstrated on a mitogen-activated protein kinase cascade model. The results show that system dynamics are highly uncertain with limited experimental data. Nevertheless, the algorithm requires only three additional experimental data points to simultaneously discriminate between possible model structures and acceptable parameter values. This sparse grid-based experiment design process provides a systematic and computationally efficient exploration over the entire uncertain parameter space of potential model structures to resolve the uncertainty in the non-linear systems biology model dynamics.

Published in:

Systems Biology, IET  (Volume:4 ,  Issue: 4 )