By Topic

Invariant image recognition by Zernike moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khotanzad, A. ; Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA ; Yaw Hua Hong

The problem of rotation-, scale-, and translation-invariant recognition of images is discussed. A set of rotation-invariant features are introduced. They are the magnitudes of a set of orthogonal complex moments of the image known as Zernike moments. Scale and translation invariance are obtained by first normalizing the image with respect to these parameters using its regular geometrical moments. A systematic reconstruction-based method for deciding the highest-order Zernike moments required in a classification problem is developed. The quality of the reconstructed image is examined through its comparison to the original one. The orthogonality property of the Zernike moments, which simplifies the process of image reconstruction, make the suggest feature selection approach practical. Features of each order can also be weighted according to their contribution to the reconstruction process. The superiority of Zernike moment features over regular moments and moment invariants was experimentally verified

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:12 ,  Issue: 5 )