By Topic

Paroxysmal Atrial Fibrillation diagnosis based on feature extraction and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pourbabaee, B. ; Dept. of Physiol., McGill Univ., Montreal, QC, Canada ; Lucas, C.

Paroxysmal Atrial Fibrillation (PAF), a really life threatening disease, is the result of irregular and repeated depolarization of the atria. In this paper, patients with PAF disease and their different episodes can be detected by extracting statistical and morphological features from ECG signals and classifying them by applying artificial neural network (ANN), Bayes optimal classifier and K-nearest neighbor (k-NN) classifier. Consequently, we become successful to diagnose about 93% of PAF patients among healthy cases and also detect their ECG signal different episodes such as those far from the PAF episode and the ones which are immediately before PAF episode with the correct classification rates (CCR) of more than 90%.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2010 IEEE Symposium on

Date of Conference:

2-5 May 2010