By Topic

Improving efficiency of power gated circuits through concurrent optimization of power switch size and forward body biasing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sathanur, A. ; Holst Center, IMEC, Eindhoven, Netherlands ; Ashouei, M. ; Huisken, J.

Power gating (PG) has emerged as an effective technique to reduce standby leakage power in portable devices where battery life time is vital. However, it comes at the cost of timing overhead which is a problem for most of the applications where real-time constraints exist. Designing efficient power gated circuits is very challenging problem due to contrasting requirements in active mode (low timing overhead implying larger power switch size) and standby mode (low standby leakage power implying smaller power switch size). In this work, we show that applying Forward Body Biasing (FBB) to the logic gates in conjunction with power gating (PG + FBB) will provide us with an additional degree of freedom which can be utilized to improve the efficiency of the power gated circuit. We propose an optimization algorithm to find the optimum power switch size and FBB value such that total leakage energy of the design (active + standby) in minimized. Results show that our PG + FBB technique on an average improves the leakage energy savings by 2X-5X as compared to using only power gating. With PG + FBB technique, one can also design a zero delay penalty power gated circuit which is not possible if only power gating is used.

Published in:

IC Design and Technology (ICICDT), 2010 IEEE International Conference on

Date of Conference:

2-4 June 2010