By Topic

A Fast Algorithm for Robust Mixtures in the Presence of Measurement Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianyong Sun ; Center for Plant Integrative Biol., Univ. of Nottingham, Sutton Bonington, UK ; Kaban, A.

In experimental and observational sciences, detecting atypical, peculiar data from large sets of measurements has the potential of highlighting candidates of interesting new types of objects that deserve more detailed domain-specific followup study. However, measurement data is nearly never free of measurement errors. These errors can generate false outliers that are not truly interesting. Although many approaches exist for finding outliers, they have no means to tell to what extent the peculiarity is not simply due to measurement errors. To address this issue, we have developed a model-based approach to infer genuine outliers from multivariate data sets when measurement error information is available. This is based on a probabilistic mixture of hierarchical density models, in which parameter estimation is made feasible by a tree-structured variational expectation-maximization algorithm. Here, we further develop an algorithmic enhancement to address the scalability of this approach, in order to make it applicable to large data sets, via a K-dimensional-tree based partitioning of the variational posterior assignments. This creates a non-trivial tradeoff between a more detailed noise model to enhance the detection accuracy, and the coarsened posterior representation to obtain computational speedup. Hence, we conduct extensive experimental validation to study the accuracy/speed tradeoffs achievable in a variety of data conditions. We find that, at low-to-moderate error levels, a speedup factor that is at least linear in the number of data points can be achieved without significantly sacrificing the detection accuracy. The benefits of including measurement error information into the modeling is evident in all situations, and the gain roughly recovers the loss incurred by the speedup procedure in large error conditions. We analyze and discuss in detail the characteristics of our algorithm based on results obtained on appropriately designed synthetic data experimen- - ts, and we also demonstrate its working in a real application example.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 8 )