By Topic

A Robust Adaptive Beamformer Based on Worst-Case Semi-Definite Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhu Liang Yu ; College of Automation Science and Engineering, South China University of Technology, Guangzhou, China ; Zhenghui Gu ; Jianjiang Zhou ; Yuanqing Li
more authors

In this correspondence, a novel robust adaptive beamformer is proposed based on the worst-case semi-definite programming (SDP). A recent paper has reported that a beamformer robust against large steering direction error can be constructed by using linear constraints on magnitude response in SDP formulation. In practice, however, array system also suffers from many other array imperfections other than steering direction error. In order to make the adaptive beamformer robust against all kinds of array imperfections, the worst-case optimization technique is proposed to reformulate the beamformer by minimizing the array output power with respect to the worst-case array imperfections. The resultant beamformer has the mathematical form of a regularized SDP problem and possesses superior robustness against arbitrary array imperfections. Although the formulation of robust beamformer uses weighting matrix, with the help of spectral factorization approach, the weighting vector can be obtained so that the beamformer can be used for both signal power and waveform estimation. Simple implementation, flexible performance control, as well as significant signal-to-interference-plus-noise ratio (SINR) enhancement, support the practicability of the proposed method.

Published in:

IEEE Transactions on Signal Processing  (Volume:58 ,  Issue: 11 )