By Topic

Analytical Modeling and Finite-Element Computation of Radial Vibration Force in Fractional-Slot Permanent-Magnet Brushless Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhu, Z.Q. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK ; Xia, Z.P. ; Wu, L.J. ; Jewell, G.W.

An analytical model has been developed for analyzing the radial vibration force in fractional-slot permanent-magnet machines. It is compared extensively by finite-element analyses and used to investigate the influence of the following: 1) stator slotting; 2) tangential field component; 3) radius in the air gap for computation; 4) load condition, etc. The major findings include the following: 1) even on an open circuit, the low harmonic component (e.g., the second for a 10-pole/12-slot machine) of the radial force exists due to the slotting effect, although the amplitude is relatively low, while the slotless analytical model cannot predict this phenomenon; 2) on a load, the slotless analytical model is accurate enough for the radial force analysis since the low-order harmonic component of the radial force is mainly due to the interaction between the magnet field and the armature-reaction field and is largely determined by the combination of the pole and slot numbers; 3) it is much more reliable to calculate the radial force in the middle of the air gap rather than close to the stator bore; and 4) the simple formula accounting only for the radial field component in the middle of the air gap is accurate enough for the radial force calculation.

Published in:

Industry Applications, IEEE Transactions on  (Volume:46 ,  Issue: 5 )