Cart (Loading....) | Create Account
Close category search window
 

Stochastic Pronunciation Modeling for Out-of-Vocabulary Spoken Term Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong Wang ; EdSST Marie Curie Training Program, Univ. of Edinburgh, Edinburgh, UK ; King, S. ; Frankel, J.

Spoken term detection (STD) is the name given to the task of searching large amounts of audio for occurrences of spoken terms, which are typically single words or short phrases. One reason that STD is a hard task is that search terms tend to contain a disproportionate number of out-of-vocabulary (OOV) words. The most common approach to STD uses subword units. This, in conjunction with some method for predicting pronunciations of OOVs from their written form, enables the detection of OOV terms but performance is considerably worse than for in-vocabulary terms. This performance differential can be largely attributed to the special properties of OOVs. One such property is the high degree of uncertainty in the pronunciation of OOVs. We present a stochastic pronunciation model (SPM) which explicitly deals with this uncertainty. The key insight is to search for all possible pronunciations when detecting an OOV term, explicitly capturing the uncertainty in pronunciation. This requires a probabilistic model of pronunciation, able to estimate a distribution over all possible pronunciations. We use a joint-multigram model (JMM) for this and compare the JMM-based SPM with the conventional soft match approach. Experiments using speech from the meetings domain demonstrate that the SPM performs better than soft match in most operating regions, especially at low false alarm probabilities. Furthermore, SPM and soft match are found to be complementary: their combination provides further performance gains.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.