Cart (Loading....) | Create Account
Close category search window
 

Design and Stability Analysis for Anytime Control via Stochastic Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Greco, L. ; DIIMA, Univ. of Salerno, Fisciano, Italy ; Fontanelli, D. ; Bicchi, A.

In this paper, we consider the problem of designing controllers for linear plants to be implemented in embedded platforms under stringent real-time constraints. These include preemptive scheduling schemes, under which the execution time allowed for control software tasks is uncertain. In a conservative Hard Real-Time (HRT) design approach, only a control algorithm that (in the worst case) is executable within the minimum time slot guaranteed by the scheduler would be employed. In the spirit of modern Soft Real-Time (SRT) approaches, we consider here an "anytime control" design technique, based on a hierarchy of controllers for the same plant. Higher controllers in the hierarchy provide better closed-loop performance, while typically requiring longer execution time. Stochastic models of the scheduler and of algorithm execution times are used to infer probabilities that controllers of different complexity can be executed at different periods. We propose a strategy for choosing among executable controllers, maximizing the usage of higher controllers, which affords better exploitation of the computational platform than the HRT design while guaranteeing stability (in a suitable stochastic sense). Results on the robustness with respect to uncertainties affecting the scheduler model, and on bumpless transfer for tracking problems are also reported. Simulation results on the control of two prototypical mechanical systems show that performance is substantially enhanced by our anytime control technique w.r.t. worst case-based scheduling.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.