By Topic

Energy-Efficient and Bandwidth-Reconfigurable Photonic Networks for High-Performance Computing (HPC) Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kodi, A.K. ; Sch. of Electr. Eng. & Comput. Sci., Ohio Univ., Athens, OH, USA ; Louri, A.

Optical interconnects are becoming ubiquitous for short-range communication within boards and racks due to higher communication bandwidth at lower power dissipation when compared to metallic interconnects. Efficient multiplexing techniques (wavelengths, time, and space) allow bandwidths to scale; static or predetermined resource allocation of wavelengths can be detrimental to network performance for nonuniform (adversial) workloads. Dynamic bandwidth reallocation (DBR) based on actual traffic pattern can lead to improved network performance by utilizing idle resources. While DBR techniques can alleviate interconnection bottlenecks, power consumption also increases considerably with increase in bit rate and channels. In this paper, we propose to improve the performance of optical interconnects using DBR techniques and simultaneously optimize the power consumption using dynamic power management (DPM) techniques. DBR reallocates idle channels to busy channels (wavelengths) for improving throughput, and DPM regulates the bit rates and supply voltages for the individual channels. A reconfigurable optoelectronic architecture and a performance adaptive algorithm for implementing DBR and DPM are proposed in this paper. Our proposed reconfiguration algorithm achieves a significant reduction in power consumption and considerable improvement in throughput, with a marginal increase in latency for synthetic and real (Splash-2) traffic traces.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 2 )