By Topic

Learning physically-instantiated game play through visual observation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barbu, A. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Narayanaswamy, S. ; Siskind, J.M.

We present an integrated vision and robotic system that plays, and learns to play, simple physically-instantiated board games that are variants of TIC TAC TOE and HEXA-PAWN. We employ novel custom vision and robotic hardware designed specifically for this learning task. The game rules can be parametrically specified. Two independent computational agents alternate playing the two opponents with the shared vision and robotic hardware, using pre-specified rule sets. A third independent computational agent, sharing the same hardware, learns the game rules solely by observing the physical play, without access to the pre-specified rule set, using inductive logic programming with minimal background knowledge possessed by human children. The vision component of our integrated system reliably detects the position of the board in the image and reconstructs the game state after every move, from a single image. The robotic component reliably moves pieces both between board positions and to and from off-board positions as needed by an arbitrary parametrically-specified legal-move generator. Thus the rules of games learned solely by observing physical play can drive further physical play. We demonstrate our system learning to play six different games.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010