By Topic

Generalized Bilateral MIMO Control by States Convergence with time delay and application for the teleoperation of a 2-DOF helicopter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Claudia Pérez-D'Arpino ; Mechatronics Research Group, Simón Bolívar University, Venezuela ; Wilfredis Medina-Meléndez ; Leonardo Fermín-León ; Juan Manuel Bogado
more authors

Bilateral Control by States Convergence is a novel and little exploited control strategy that has been successfully applied to the teleoperation of robotic manipulators using SISO control. Based on the state space representation, the main philosophy of this control strategy consists in achieving convergence of states between the master and the slave, by setting the dynamical behavior of the master-slave error as a states-independent autonomous system. This paper presents a generalization of this strategy to MIMO systems, with time delay in the master-slave communication channels. It is demonstrated how the feedback gains required by the state convergence control schema can be found by solving a set of ((m × n) + (m × m) + n ) nonlinear equations for a system with m inputs, n states and m outputs. Unlike previous research, which has been applied only to manipulators considering 1-DOF for the states-convergence control loop, the extension to the general MIMO case has allowed to apply the technique to the teleoperation of a 2-DOF helicopter. A decoupling network and states-feedback are used for local control, while the states-convergence control manages the bilateral issues. Simulation results are presented, showing a satisfactory performance of the control strategy.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010