Cart (Loading....) | Create Account
Close category search window
 

Automatic filter design for synthesis of haptic textures from recorded acceleration data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Romano, J.M. ; Haptics Group, Univ. of Pennsylvania, Philadelphia, PA, USA ; Yoshioka, T. ; Kuchenbecker, K.J.

Sliding a probe over a textured surface generates a rich collection of vibrations that one can easily use to create a mental model of the surface. Haptic virtual environments attempt to mimic these real interactions, but common haptic rendering techniques typically fail to reproduce the sensations that are encountered during texture exploration. Past approaches have focused on building a representation of textures using a priori ideas about surface properties. Instead, this paper describes a process of synthesizing probe-surface interactions from data recorded from real interactions. We explain how to apply the mathematical principles of Linear Predictive Coding (LPC) to develop a discrete transfer function that represents the acceleration response under specific probe-surface interaction conditions. We then use this predictive transfer function to generate unique acceleration signals of arbitrary length. In order to move between transfer functions from different probe-surface interaction conditions, we develop a method for interpolating the variables involved in the texture synthesis process. Finally, we compare the results of this process with real recorded acceleration signals, and we show that the two correlate strongly in the frequency domain.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.