By Topic

Wearable accelerometer based extendable activity recognition system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jie Yang ; Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University, China, 200240 ; Shuangquan Wang ; Ningjiang Chen ; Xin Chen
more authors

Recognizing the human activities of daily living (ADL) is an important research issue in the pervasive environment. Activity recognition is treated as a classification problem and the multi-class classifier is often used. Though the multi-class classifier can obtain high classification accuracy, it can not detect the noise activities and unknown activities, and the system has no extendable recognition capability. In this paper, we proposed a recognition system which can recognize known activities and detect unknown activities simultaneously. For each known activity, one one-class classification model is built up and the combined one-class classification models are used to judge whether a test sample belongs to known activities. For the known samples, the multi-class classifier is used to recognize their types. For the continuous unknown samples, based on segmentation algorithm, training samples of new activities are extracted and added into the recognition system to extend the system's recognition capability.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010