By Topic

Indoor scene recognition through object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Espinace, P. ; Dept. of Comput. Sci., Pontificia Univ. Catolica de Chile, Santiago de Chile, Chile ; Kollar, T. ; Soto, A. ; Roy, N.

Scene recognition is a highly valuable perceptual ability for an indoor mobile robot, however, current approaches for scene recognition present a significant drop in performance for the case of indoor scenes. We believe that this can be explained by the high appearance variability of indoor environments. This stresses the need to include high-level semantic information in the recognition process. In this work we propose a new approach for indoor scene recognition based on a generative probabilistic hierarchical model that uses common objects as an intermediate semantic representation. Under this model, we use object classifiers to associate low-level visual features to objects, and at the same time, we use contextual relations to associate objects to scenes. As a further contribution, we improve the performance of current state-of-the-art category-level object classifiers by including geometrical information obtained from a 3D range sensor that facilitates the implementation of a focus of attention mechanism within a Monte Carlo sampling scheme. We test our approach using real data, showing significant advantages with respect to previous state-of-the-art methods.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010