By Topic

Planning pre-grasp manipulation for transport tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lillian Y. Chang ; The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ; Siddhartha S. Srinivasa ; Nancy S. Pollard

Studies of human manipulation strategies suggest that pre-grasp object manipulation, such as rotation or sliding of the object to be grasped, can improve task performance by increasing both the task success rate and the quality of load-supporting postures. In previous demonstrations, pre-grasp object rotation by a robot manipulator was limited to manually-programmed actions. We present a method for automating the planning of pre-grasp rotation for object transport tasks. Our technique optimizes the grasp acquisition point by selecting a target object pose that can be grasped by high-payload manipulator configurations. Careful selection of the transition states leads to successful transport plans for tasks that are otherwise infeasible. In addition, optimization of the grasp acquisition posture also indirectly improves the transport plan quality, as measured by the safety margin of the manipulator payload limits.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010