By Topic

A dipole field for object delivery by pushing on a flat surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Takeo Igarashi ; JST ERATO Igarashi Design Interface Project, Tokyo, Japan ; Youichi Kamiyama ; Masahiko Inami

This paper introduces a simple algorithm for non-prehensile object transportation by a pushing robot on a flat surface. We assume that the global position and orientation of the robot and objects are known. The system computes a dipole field around the object and moves the robot along the field. This simple algorithm resolves many subtle issues in implementing reliable pushing behaviors, such as collision avoidance, error recovery, and multi-robot coordination. We verify the effectiveness of the algorithm via several experiments with varying robot and object form factors. Although object delivery by pushing and motion control by a vector field are not new, the proposed algorithm offers easier implementation with fewer parameter adjustments because of its mode-less definition and scale-invariant formulation.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010