By Topic

Vision-based pose estimation for autonomous indoor navigation of micro-scale Unmanned Aircraft Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rudol, P. ; Dept. of Comput. & Inf. Sci., Linkoping Univ., Linkoping, Sweden ; Wzorek, M. ; Doherty, P.

We present a navigation system for autonomous indoor flight of micro-scale Unmanned Aircraft Systems (UAS) which is based on a method for accurate monocular vision pose estimation. The method makes use of low cost artificial landmarks placed in the environment and allows for fully autonomous flight with all computation done on-board a UAS on COTS hardware. We provide a detailed description of all system components along with an accuracy evaluation and a time profiling result for the pose estimation method. Additionally, we show how the system is integrated with an existing micro-scale UAS and provide results of experimental autonomous flight tests. To our knowledge, this system is one of the first to allow for complete closed-loop control and goal-driven navigation of a micro-scale UAS in an indoor setting without requiring connection to any external entities.

Published in:

Robotics and Automation (ICRA), 2010 IEEE International Conference on

Date of Conference:

3-7 May 2010