By Topic

Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yihong Wu ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Verdu, S.

In Shannon theory, lossless source coding deals with the optimal compression of discrete sources. Compressed sensing is a lossless coding strategy for analog sources by means of multiplication by real-valued matrices. In this paper we study almost lossless analog compression for analog memoryless sources in an information-theoretic framework, in which the compressor or decompressor is constrained by various regularity conditions, in particular linearity of the compressor and Lipschitz continuity of the decompressor. The fundamental limit is shown to the information dimension proposed by Rényi in 1959.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 8 )