Cart (Loading....) | Create Account
Close category search window

Secure Communications With Insecure Feedback: Breaking the High-SNR Ceiling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, T.T. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Poor, H.V.

A multiple-antenna Gaussian wiretap channel in which the number of antennas at the source is not greater than that at the eavesdropper is considered. Without feedback, the secrecy capacity over such a channel generally converges to a constant at high signal-to-noise ratio (SNR). A half-duplex secure protocol allowing the destination to actively transfer random keys in the form of known interference is proposed. It is shown that using multiple antennas at the destination is instrumental in achieving a secrecy rate that grows linearly with logSNR. The pre-log factor of the secrecy rate, i.e., the number of secure degrees of freedom, is characterized, revealing an interesting interplay between the numbers of antennas at the three communication nodes. The relationship of the achievable secure degrees of freedom to those obtained in the case without feedback is finally discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.