Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Exploiting Cooperative Advantages in Slotted ALOHA Random Access Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong, Y.-W.P. ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chun-Kuang Lin ; Shu-Hsien Wang

In cooperative systems, users achieve spatial diversity and multihop gains by transmitting packets over multiple independent fading paths provided by their partners. Most previous works on cooperative communications focus on the physical layer aspects such as coding, modulation, and transceiver signal processing techniques. In this work, we study the advantages of user cooperation from a MAC layer perspective and devise queueing strategies to exploit cooperative gains in random access networks. Based on the conventional slotted ALOHA protocol, we propose a simple cooperative transmission mechanism for a two-user cooperative pair. We derive the two-user stability region of the proposed system and show the improvements compared to noncooperative systems. The benefits can be attributed to both physical layer cooperation, where users with good channels may relay for those with bad channels, and MAC layer cooperation, where system parameters can be chosen to enhance cooperation and reduce competition. Then, we extend the proposed strategy to a finite-user system that consists of multiple cooperative pairs. By treating each pair as a single transmission entity, we derive inner bounds for the finite-user stability region and propose a ranking system to characterize the transmission entities' relative tendency of being stable (or unstable).

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 8 )