By Topic

Tighter Bounds on the Capacity of Finite-State Channels Via Markov Set-Chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Chen ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Permuter, H. ; Weissman, T.

The theory of Markov set-chains is applied to derive upper and lower bounds on the capacity of finite-state channels that are tighter than the classic bounds by Gallager. The new bounds coincide and yield single-letter capacity characterizations for a class of channels with the state process known at the receiver, including channels whose long-term marginal state distribution is independent of the input process. Analogous results are established for finite-state multiple access channels.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 8 )