By Topic

Convergence of Consensus Models With Stochastic Disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aysal, T.C. ; Commun. Res. in Signal Process. Group, Cornell Univ., Ithaca, NY, USA ; Barner, K.E.

We consider consensus algorithms in their most general setting and provide conditions under which such algorithms are guaranteed to converge, almost surely, to a consensus. Let {A(t), B(t)} ∈ RN×N be (possibly) stochastic, nonstationary matrices and {x(t), m(t)} 6 RN×1 be state and perturbation vectors, respectively. For any consensus algorithm of the form x(t + 1) = A(t)x(t) + B(t)m(t), we provide conditions under which consensus is achieved almost surely, i.e., Pr-{limt →∞ x(t) = c1} -1 for some c ∈ R. Moreover, we show that this general result subsumes recently reported results for specific consensus algorithms classes, including sum-preserving, nonsum-preserving, quantized, and noisy gossip algorithms. Also provided are the e-converging time for any such converging iterative algorithm, i.e., the earliest time at which the vector x(t) is ε close to consensus, and sufficient conditions for convergence in expectation to the average of the initial node measurements. Finally, mean square error bounds of any consensus algorithm of the form discussed above are presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 8 )