By Topic

Goal Evaluation of Segmentation Algorithms for Traffic Sign Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hilario Gomez-Moreno ; Departamento de Teoría de la Señal y Comunicaciones, Escuela Politécnica Superior, Universidad de Alcalá, Alcalá de Henares, Spain ; Saturnino Maldonado-Bascon ; Pedro Gil-Jimenez ; Sergio Lafuente-Arroyo

This paper presents a quantitative comparison of several segmentation methods (including new ones) that have successfully been used in traffic sign recognition. The methods presented can be classified into color-space thresholding, edge detection, and chromatic/achromatic decomposition. Our support vector machine (SVM) segmentation method and speed enhancement using a lookup table (LUT) have also been tested. The best algorithm will be the one that yields the best global results throughout the whole recognition process, which comprises three stages: 1) segmentation; 2) detection; and 3) recognition. Thus, an evaluation method, which consists of applying the entire recognition system to a set of images with at least one traffic sign, is attempted while changing the segmentation method used. This way, it is possible to observe modifications in performance due to the kind of segmentation used. The results lead us to conclude that the best methods are those that are normalized with respect to illumination, such as RGB or Ohta Normalized, and there is no improvement in the use of Hue Saturation Intensity (HSI)-like spaces. In addition, an LUT with a reduction in the less-significant bits, such as that proposed here, improves speed while maintaining quality. SVMs used in color segmentation give good results, but some improvements are needed when applied to achromatic colors.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:11 ,  Issue: 4 )