By Topic

Feature Selection in AVHRR Ocean Satellite Images by Means of Filter Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Piedra-Fernández, J.A. ; Languages & Comput. Dept., Univ. of Almeria, Almeria, Spain ; Cantón-Garbín, M. ; Wang, J.Z.

Automatic retrieval and interpretation of satellite images is critical for managing the enormous volume of environmental remote sensing data available today. It is particularly useful in oceanography and climate studies for examination of the spatio-temporal evolution of mesoscalar ocean structures appearing in the satellite images taken by visible, infrared, and radar sensors. This is because they change so quickly and several images of the same place can be acquired at different times within the same day. This paper describes the use of filter measures and the Bayesian networks to reduce the number of irrelevant features necessary for ocean structure recognition in satellite images, thereby improving the overall interpretation system performance and reducing the computational time. We present our results for the National Oceanographic and Atmospheric Administration satellite Advanced Very High Resolution Radiometer (AVHRR) images. We have automatically detected and located mesoscale ocean phenomena of interest in our study area (North-East Atlantic and the Mediterranean), such as upwellings, eddies, and island wakes, using an automatic selection methodology which reduces the features used for description by about 80%. Finally, Bayesian network classifiers are used to assess classification quality. Knowledge about these structures is represented with numeric and nonnumeric features.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 12 )