By Topic

Computational Study on the Performance of Si Nanowire pMOSFETs Based on the k \cdot p Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mincheol Shin ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea ; Sunhee Lee ; Gerhard Klimeck

Full-quantum device simulations on p-type Si nanowire field-effect transistors based on the k · p method, using the k ·p parameters tuned against the sp3s* tight-binding method, are carried out. Full transport calculations from both methods agree reasonably well, and the spin-orbit coupling effect is found to be negligible in the final current-voltage characteristics. Use of the highly efficient simulator based on the 3 × 3 k ·p Hamiltonian is therefore justified, and simulations of nanowire devices with cross sections from 3 × 3 nm2 up to 10 × 10 nm2 are performed. The subthreshold characteristics, threshold voltages, and ON-state currents for the three respective transport directions of the [100], [110], and [111] directions are examined. The device characteristics for the [110] and [111] directions are quite similar in every respect, and the [100] direction has the advantage with regard to the subthreshold behavior when the channel length is aggressively scaled down. The on-current magnitudes for the three respective orientations do not differ much, although the on-current in the [100] direction is a little smaller, compared with that in the other two directions when the channel width becomes smaller. An uncoupled mode space approach has been used to determine the contributions from individual heavy and light hole subbands, enabling an insightful analysis of the device characteristics.

Published in:

IEEE Transactions on Electron Devices  (Volume:57 ,  Issue: 9 )