Cart (Loading....) | Create Account
Close category search window
 

Quantifying viscoelasticity of gelatin phantoms by measuring impulse response using compact optical sensors [Correspondence]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Qiang ; Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA ; Greenleaf, J. ; Xiaoming Zhang

Tissue elastography measures tissue mechanical properties, which contain important physiological information and help medical diagnosis. Instead of tracking shear wave propagation inside tissue as do magnetic resonance elastography and ultrasound based techniques, this study focuses on monitoring the propagation of surface Raleigh waves stimulated by short impulses. The method is noncontact, noninvasive, and low cost and has a potential for clinical applications. A customized device designed to measure surface wave propagation is constructed based on a laser displacement sensor (LDS). Experiments are carried out on two porcine skin gelatin phantoms of different concentrations. For each phantom, the phase velocities of specific frequencies are extracted using a cross-spectrum method and then the material elasticity and viscosity are found by fitting the phase velocities with the Voigt's model. The results suggest that measuring viscoelasticity by monitoring the response to a surface impulse is an efficient method because of the richness of frequency content of impulse responses. The results are validated with a standard continuous wave (CW) method.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.