By Topic

Independent-speaker isolated word speech recognition based on mean-shift framing using hybrid HMM/SVM classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahbar, K. ; Tehran Center, Islamic Azad Univ., Tehran, Iran ; Broumandnia, A.

This paper studies an independent-speaker isolated word speech recognition based on mean-shift framing using hybrid HMM/SVM classifier. The proposed framework includes two main units: preprocessing unit, and classification unit. The first unit tries to segment the speech signal into proper frames using the benefits of mean-shift gradient clustering algorithm and extract time-frequency relevant features in a way that maximize relative entropy of time-frequency energy distribution among segments. Then the second unit classifies words into the proper classes. To fulfill this intention, self-adaptive HMM calculates word's likelihood of each existed class and finally support vector machine (SVM) classifies it by using all classes' likelihood as an input vector. To validate method's accuracy and stability, the method verified within TULIPS1 dataset in the present of different kind of additive noises provided by SPIB. Comparing the results with the outcomes of the previous paper shows 3.2% improvement.

Published in:

Electrical Engineering (ICEE), 2010 18th Iranian Conference on

Date of Conference:

11-13 May 2010