By Topic

Metal-related gate sinking due to interfacial oxygen layer in Ir/InAlN high electron mobility transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Ostermaier, C. ; Institute of Solid State Electronics, Vienna University of Technology, A-1040 Vienna, Austria ; Pozzovivo, G. ; Basnar, B. ; Schrenk, W.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3458700 

We report on an annealing-induced “gate sinking” effect in a 2-nm-thin In0.17Al0.83N/AlN barrier high electron mobility transistor with Ir gate. Investigations by transmission electron microscopy linked the effect to an oxygen containing interlayer between the gate metal and the InAlN layer and revealed diffusion of oxygen into iridium during annealing. Below 700 °C the diffusion is inhomogeneous and seems to occur along grain boundaries, which is consistent with the capacitance-voltage analysis. Annealing at 700 °C increased the gate capacitance over a factor 2, shifted the threshold voltage from +0.3 to +1 V and increased the transconductance from 400 to 640 mS/mm.

Published in:

Applied Physics Letters  (Volume:96 ,  Issue: 26 )