By Topic

QoS Analysis of Cognitive Radio Channels with Perfect CSI at Both Receiver and Transmitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akin, S. ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Gursoy, M.C.

In this paper, cognitive transmission under quality of service (QoS) constraints is studied. In the cognitive radio channel model, it is assumed that both the secondary receiver and the secondary transmitter know the channel fading coefficients perfectly and optimize the power adaptation policy under given constraints, depending on the channel activity of the primary users, which is determined by channel sensing performed by the secondary users. The transmission rates are equal to the instantaneous channel capacity values. A state transition model with four states is constructed to model this cognitive transmission channel. Statistical limitations on the buffer lengths are imposed to take into account the QoS constraints. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. The impact upon the effective capacity of several system parameters, including the channel sensing duration, detection threshold, detection and false alarm probabilities, and QoS parameters, is investigated.

Published in:

Wireless Communications and Networking Conference (WCNC), 2010 IEEE

Date of Conference:

18-21 April 2010