Cart (Loading....) | Create Account
Close category search window
 

TinyPairing: A Fast and Lightweight Pairing-Based Cryptographic Library for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaokang Xiong ; Dept. of Comput. Sci., City Univ. of Hong Kong, Hong Kong, China ; Wong, Duncan S. ; Xiaotie Deng

Computing Bilinear Pairing on sensor platforms has become an important research topic since the introduction of pairing-based cryptography to Wireless Sensor Networks (WSNs). Some previous works have provided benchmarks for the pairing computation on sensors. However, a complete pairing-based cryptographic scheme requires much more than just a bilinear pairing operation, and little work has been done yet in this area. In this paper, we present the first fully functional pairing-based cryptographic library for WSNs. The library is fast and lightweight, and has an additional of one identity-based encryption scheme and two short signature schemes included. We also propose several new algorithms and techniques, and show that they significantly improve the speed and reduce the memory usage of the library. The performance results of implementing the three pairing-based cryptographic schemes show that pairing-based cryptosystems are feasible and applicable in WSNs. In particular, the amount of RAM and ROM taken by each of these pairing-based cryptographic schemes is no more than 10% and 20%, respectively, of the total capacities of a MICAz mote.

Published in:

Wireless Communications and Networking Conference (WCNC), 2010 IEEE

Date of Conference:

18-21 April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.