By Topic

Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arasaratnam, I. ; Center for Mechatron. & Hybrid Technol., McMaster Univ., Hamilton, ON, Canada ; Haykin, Simon ; Hurd, T.R.

In this paper, we extend the cubature Kalman filter (CKF) to deal with nonlinear state-space models of the continuous-discrete kind. To be consistent with the literature, the resulting nonlinear filter is referred to as the continuous-discrete cubature Kalman filter (CD-CKF). We use the Itô-Taylor expansion of order 1.5 to transform the process equation, modeled in the form of stochastic ordinary differential equations, into a set of stochastic difference equations. Building on this transformation and assuming that all conditional densities are Gaussian-distributed, the solution to the Bayesian filter reduces to the problem of how to compute Gaussian-weighted integrals. To numerically compute the integrals, we use the third-degree cubature rule. For a reliable implementation of the CD-CKF in a finite word-length machine, it is structurally modified to propagate the square-roots of the covariance matrices. The reliability and accuracy of the square-root version of the CD-CKF are tested in a case study that involves the use of a radar problem of practical significance; the problem considered herein is challenging in the context of radar in two respects- high dimensionality of the state and increasing degree of nonlinearity. The results, presented herein, indicate that the CD-CKF markedly outperforms existing continuous-discrete filters.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 10 )