Cart (Loading....) | Create Account
Close category search window
 

Recursive Implementation of the Distributed Karhunen-Loève Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amar, A. ; Fac. of Electr. Eng., Delft Univ. of Technol., Delft, Netherlands ; Leshem, A. ; Gastpar, M.

In the distributed linear source coding problem, a set of distributed sensors observe subsets of a data vector with noise, and provide the fusion center linearly encoded data. The goal is to determine the encoding matrix of each sensor such that the fusion center can reconstruct the entire data vector with minimum mean square error. The recently proposed local Karhunen-Loève transform approach performs this task by optimally determining the encoding matrix of each sensor assuming the other matrices are fixed. This approach is implemented iteratively until convergence is reached. Herein, we propose a greedy algorithm. In each step, one of the encoding matrices is updated by appending an additional row. The algorithm selects in a greedy fashion a single sensor that provides the largest improvement in minimizing the mean square error. This algorithm terminates after a finite number of steps, that is, when all the encoding matrices reach their predefined encoded data size. We show that the algorithm can be implemented recursively, and compared to the iterative approach, the algorithm reduces the computational load from cubic dependency to quadratic dependency on the data size. This makes it a prime candidate for on-line and real-time implementations of the distributed Karhunen-Loève transform. Simulation results suggest that the mean square error performance of the suggested algorithm is equivalent to the iterative approach.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.