By Topic

Design of Flip-Chip Interconnect Using Epoxy-Based Underfill Up to V -Band Frequencies With Excellent Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Li-Han Hsu ; Department of Materials Science and Engineering, Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, MC2, National Chiao Tung University, Chalmers University of Technology, Hsinchu, Göteborg, Sweden ; Wei-Cheng Wu ; Edward Yi Chang ; Herbert Zirath
more authors

This study demonstrates a flip-chip interconnect with epoxy-based underfill (εr = 3.5 and tan δ = 0.02 at 10 MHz) for packaging applications up to V-band frequencies. To achieve the best interconnect performance, both the matching designs on GaAs chip and Al2O3 substrate were adopted with the underfill effects taken into consideration. The optimized flip-chip interconnect showed excellent performance from dc to 67 GHz with return loss below -20 dB and insertion loss less than 0.6 dB. Furthermore, the dielectric loss induced by the underfill was extracted from measurement and compared with the simulation results. The reliability tests including 85°C/85 % relative humidity test, thermal cycling test, and shear force test were performed. For the first time, the S-parameters measurement was performed to check the flip-chip reliability, and no performance decay was observed after 1000 thermal cycles. Moreover, the mechanical strength was improved about 12 times after the underfill was applied. The results show that the proposed flip-chip architecture has excellent reliability and can be applied for commercial applications.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 8 )