Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An Improved Image Compression Algorithm Using Binary Space Partition Scheme and Geometric Wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chopra, G. ; Coll. of Basic Sci. & Humanities, G. B. Pant Univ. of Agric. & Technol., Pantnagar, India ; Pal, A.K.

Geometric wavelet is a recent development in the field of multivariate nonlinear piecewise polynomials approximation. The present study improves the geometric wavelet (GW) image coding method by using the slope intercept representation of the straight line in the binary space partition scheme. The performance of the proposed algorithm is compared with the wavelet transform-based compression methods such as the embedded zerotree wavelet (EZW), the set partitioning in hierarchical trees (SPIHT) and the embedded block coding with optimized truncation (EBCOT), and other recently developed “sparse geometric representation” based compression algorithms. The proposed image compression algorithm outperforms the EZW, the Bandelets and the GW algorithm. The presented algorithm reports a gain of 0.22 dB over the GW method at the compression ratio of 64 for the Cameraman test image.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )