By Topic

A Linear Permanent Magnet Generator for Powering Implanted Electronic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasiri, A. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin-Milwaukee, Milwaukee, WI, USA ; Zabalawi, S.A. ; Jeutter, D.C.

Permanent magnet (PM) machines provide high efficiency, compact size, robustness, lightweight, and low noise. These features qualify them as the best suitable machine for medical applications. The system presented in this paper is a self-contained, small size, and reliable device that can continuously provide power. The core of the system is a linear generator that consists of two layers of PMs and one layer of coils. It generates power from multidirectional body movements. The movement of the device causes the coil layer to move. The relative movement of the coils versus PMs, on two sides, creates a varying flux in the windings. This change in flux produces voltage in the winding and can be converted into electrical power if a load is connected. The best place to implement this device to produce continuous power is on a muscle inside the body that is linked to the respiratory system. Design, simulation, implementation, and testing of the generator are presented in this paper. The testing results reveal that the generator can produce up to 1 mW of power in the body.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )