By Topic

High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
McKendry, J.J.D. ; Inst. of Photonics, Univ. of Strathclyde, Glasgow, UK ; Green, R.P. ; Kelly, A.E. ; Zheng Gong
more authors

The high-frequency modulation of individual pixels in III-nitride-based micro-pixel light-emitting diode arrays, where each array consists of 16 × 16 individually addressable 72-μm-diameter pixels, are reported. The devices investigated have peak emission wavelengths at 370, 405, and 450 nm, respectively. The optical -3-dB modulation bandwidth of a typical pixel from the 450-nm-emitting device was found to be approximately 245 MHz. Data transmission at rates of up to 1 Gb/s is demonstrated from a single pixel emitting at 450 nm, using on-off keying nonreturn-to-zero modulation, with a bit-error ratio of less than 1 × 10-10. Such devices have potential for free-space or fiber-coupled visible light communications.

Published in:

Photonics Technology Letters, IEEE  (Volume:22 ,  Issue: 18 )