By Topic

Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianfeng Zhai ; State Key Laboratory of Millimeter Waves, Department of Radio Engineering, School of Information Science and Engineering, Southeast University, Nanjing, China ; Jianyi Zhou ; Lei Zhang ; Wei Hong

In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:20 ,  Issue: 9 )