By Topic

An EEG-Based BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300 Potential

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yuanqing Li ; School of Automation Science and Engineering, South China University of Technology, Guangzhou, China ; Jinyi Long ; Tianyou Yu ; Zhuliang Yu
more authors

Two-dimensional cursor control is an important and challenging issue in EEG-based brain-computer interfaces (BCIs). To address this issue, here we propose a new approach by combining two brain signals including Mu/Beta rhythm during motor imagery and P300 potential. In particular, a motor imagery detection mechanism and a P300 potential detection mechanism are devised and integrated such that the user is able to use the two signals to control, respectively, simultaneously, and independently, the horizontal and the vertical movements of the cursor in a specially designed graphic user interface. A real-time BCI system based on this approach is implemented and evaluated through an online experiment involving six subjects performing 2-D control tasks. The results attest to the efficacy of obtaining two independent control signals by the proposed approach. Furthermore, the results show that the system has merit compared with prior systems: it allows cursor movement between arbitrary positions.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 10 )