By Topic

Application-Level Data Dissemination in Multi-Hop Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peter Vingelmann ; Dept. of Autom. & Appl. Inf., Budapest Univ. of Technol. & Econ., Budapest, Hungary ; Frank H. P. Fitzek ; Daniel E. Lucani

We investigate different schemes for data dissemination in multi-hop ad-hoc networks using network coding. We study the performance of these schemes in terms of the completion time when a set of data packets must be disseminated from a single source to all nodes in a multi-hop network, i.e. a network where at least one node is several hops away from the source. Therefore some network nodes must relay information to other nodes that are farther away from the source. In this setting, a relay node does not send a particular data packet, but a linear combination of the packets that it has previously received. The selection of such relays has a significant impact on performance. We present a graphical simulator based on OpenGL that allows to study performance and illustrate the status of network nodes in real time during the dissemination of an image file. Features of real-life ad-hoc networks such as packet losses and collisions are taken into consideration in our simulator. Numerical results are presented for simple linear meshed networks and for arbitrary topologies. Results indicate that schemes promoting parallel non-interfering transmissions complete the dissemination process faster.

Published in:

2010 IEEE International Conference on Communications Workshops

Date of Conference:

23-27 May 2010